Introduction
Usage
Blueprints
Delegates
Variables
Cpp
Delegates
Variables
Debugging
Installation

Quick Start

Table of Contents

1.1

1.2
1.21
1.2.1.1
1.21.2
1.2.2
1.2.2.1
1.22.2
1.3
1.4
1.5

Actions Extension

Actions Extension is a plugin that adds blueprintable async tasks called actions. It can be used for a lot of
things but some examples are Al or API Rest.

If you like our plugins, consider becoming a Patron. It will go a long way in helping me create more awesome
tech!

Owner [self | Return Value

Class ny

Cp Time |J_|||

Actions are quite similar to async task nodes (like Delays or AIMoves) in their concept, but have some extra
features that make them widely useful.

An Action is a blueprint (or c++ class) that executes inside another object to encapsulate logic.

Where can I use an Action?

Any object with world context can have an action and its usage goes from Al behaviors to API Rest calls.

We have tried both options extensively and the results are a lot more simple than normal code. You get better
parallel programming, quality of code. At the end it just becomes easier to deal with complex logic.

This system is also heavily focused on the usage of Actions inside Actions, creating a tree of dependencies.
This is specially useful for Al.

Quick Start

Check Quick Start to see how to setup and configure the plugin.

https://www.patreon.com/bePatron?u=16503983

Usage in Blueprints

Call an Action

To execute an action we have to use the Action node.

You can find it by right clicking on a graph and searching for "Action™:

> Event BeginPlay
C

All Actions for this Blueprint Cont

4 pctions
'A{:ticr‘n
4 pdd Compoh
4 Factions

Creates a new action

Then we have to assign the action class we want to use.

¢ Event BeginPlay "B No Action
[]

QO None
O Action

O simpleAction

3 items h Simple Action [§ Options -

After this, all its variables and delegates will show up for you to use and the action is ready to execute.

Create an Action

To create an action, we have to go to
content browser -> right click -> Blueprint Class

-'#,. Level

Then we select "Action" class or one of Action's children

4 All Classes

Search
4 Object
O AbclmportSettings
b Action
- @ Actor
I ® ActorComponent
[3='O AlSense
[::-O AlSenseConfig

wd AnimationModifier

<=» AnimationSharingSetup
© AnimationSharingStateProcessor
O AnimMetaData
Q) AnimNotify
o T R L

ted) o« View Options«

Salect Cancel

»

Then we open the blueprint we created.
All actions have 3 main events:

e Activate: When it gets created
e Tick: When it ticks, if it is enabled. TickRate is applied.
e Finish: When the action finished and why (Success, Fail or Cancel)

Make sure your actions call Succeed or Fail. Otherwise the action will run until its owner is destroyed or the
game closes.

Exposing Delegates
Actions can expose Event Dispatchers to action calls.

e |[f the event dispatcher has any parameter, it will show up as an event pin
e [f it has no parameters, an execution pin will show up

So as an example, if we have the following two events:
e SimpleEvent with no parameters

o EventWithParameter with a boolean

4 Event Dispatchers

% simple
®# WithParameter

Our Action will look like this:

= sim ple Action

Return Value

Simple

With Parameter Event

&> MyEvent

Result

If an event doesn't appear on an action node, right click -> Refresh Node to refresh it

Exposing Variables

Most of the times, when we have an action, we want to feed it with variables to customize its behavior, and as
you will see, it's very easy to do so.

First open your Action blueprint and add a new variable of any type

4Variables +

Mark the variable as Editable

AVariables

== Speed

Finally, check "Expose on Spawn" as true

i

Variable Type

D
g
q
|

Instance Editable
Blueprint Read Only
Tooltip

Expose on Spawn
Private

o Cinematics

Slider Range
Value Range

Replication

Replication Condition

4 Default Value

II B AN
‘l d 3

Speed

This variable will now show up on all action nodes.

If a variable doesn't appear on an action node, right click -> Refresh Node to refresh it

Usage in C++

All functions are well commented on code. Feel free to give them a look for detailed information.

Call an Action

There are multiple ways of creating an action, here are some:

Note that Actions require an owner with access to world. Otherwise, activation will fail.

Create an Action

You can simply create a child class of UAction (or any other action class).

Exposing Delegates
Actions can expose Multicast delegates to action calls.

e |[f the delegate has any parameter, it will show up as an event pin
e [f it has no parameters, an execution pin will show up

So as an example, if we have the following two events:

o NoParameter with no parameters
e WithParameter with a boolean

We first have to declare our delegates

Ignore those errors, it's just Intellisense doing its usual magic. Everything is fine, | promise

10

Exposing Variables
Most of the times, when we have an action, we want to feed it with variables to customize its behavior, and as
you will see, it's very easy to do so.

Member variables marked as BlueprintReadWrite and with metadata ExposeOnSpawn="true" will show on
Blueprint Action nodes.

InSpawn = "true"), EditAnywhere,

With C++ in particular, any public variable can be edited as usual before Activation.

1"

Debugging

Gameplay Debugger

Actions can be debugged in-game with gameplay debugger.

Actions will display for the focused actor, its controller and the current player controller (the first local player). It is

displayed as a tree of sub-actions.

Tap [Ap: y
Ctri+Tilde:HUD Ctr+Ta
h ogue 5EQS 6:Per

- =P i) o] '@gld]er'l ua

Wheat 209
Stone 15

Blueprint Debugger

Debug abt8E%BP_soldier1o_z

Like any other normal Blueprint, blueprint debugging is supported such as instance selection or visualization of

graphs.

12

https://docs.unrealengine.com/en-us/Gameplay/Tools/GameplayDebugger

Installation

Manually

This are the general steps for installing the plugin into your project:

1. Download the last release from here
Make sure you download the same version that your project uses

2. Extract the folder “ActionsExtension” into the Plugins folder of your existing project (e.g "MyProject/Plugins")

2. Done! You can now open the project

From Marketplace

Install from the launcher: AVAILABLE HERE

13

https://github.com/PipeRift/ActionsExtension/releases
https://www.unrealengine.com/marketplace/actions-extension

Quick Start

Quick Start will show the basic steps to follow to setup the plugin and start using it at a base level.

Setting Up the Project

We can start by creating an empty project (How to create UE4 projects) or instead using your own. Then
installing the plugin from marketplace or inside Plugins folder (See Installation).

If everything went right, we should see the plugin enabled under Edit->Plugins->Piperift
urce Control » Project » Piperift Search

ting Actions Extension
"= Unreal Studio A plugin that adds asynchronous tasks called Actions to UE4

“i= Virtual Production

"IZ Virtual Reality

= Widgets Enabled

4 @ Project Attributes Extension
"= Other A lightweight attributes system for Unreal Engine 4

Actions Extension doesn't require anything else to work. @

Creating The action

Lets start by creating a very simple action.

First we go to the content browser, right click, Blueprint Class

Then we select Action class (or any other child class of Action)

14

https://docs.unrealengine.com/en-US/Engine/Basics/Projects/Browser

4 All Classes

O AbcimportSettings
5 .

L

I @y Actor

- ® ActorComponent
>O Aisens:

[::-O nfig

wi A nimationModifier
=== AnimationSharingSetup
O AnimationSharingStateProcessor
O AnimMetaData
I O ,t'-.n|mr£nt|f'.r

53: ith (25 I,tn=d| @ View Options~

 Select Cancel

Then we open the blueprint we created and add the following functions on Activate. This will be called when the
action starts its execution, then wait 1 second, and finish.

1 0 % e f Succeed
€ Event Activate [Delay f Print String
» » Completed .

(O Duration |W| Target [s ..|;|

Development Onl'_,.
v

Make sure your actions call Succeed or Fail. Otherwise the action will run until its owner is destroyed or the
game closes.

Calling The action

Now that we have our action ready, we have to execute it. For that we will go to our level blueprint.

15

Y B .

Hings Blueprints Cinematics Build
Blueprint Class

MNew Empty Blueprint Class...

M Open Blueprint Clas

Level Blueprints

Then from our BeginPlay we add the node "Action"

> Event BeginPlay
C

All Actions for this Blueprint

E
4 Aetions
'Ac:ticr‘n
4 Add Compon
4 Factions

Creates a new action

Finally, we assign the action we created previously to the class pin

¢ Event BeginPlay "B Mo Action
P9
Owmeer [gplf | Return Valse

HEEE]

O None
Q Action

O Simpleﬁ.ctinnh‘
3 ite

3 items Simple Action i Options -

The Result

After all the previous steps we will see that the message prints exactly 1 second after we hit play.

16

Compile Play Launch

17

	Introduction
	Blueprints
	Delegates
	Variables

	Cpp
	Delegates
	Variables

	Debugging
	Installation
	Quick Start

